Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Inflamm Res ; 16: 1867-1877, 2023.
Article in English | MEDLINE | ID: covidwho-2316345

ABSTRACT

Background: SARS-CoV-2-induced acute lung injury but its nucleocapsid (N) and/or Spike (S) protein involvements in the disease pathology remain elusive. Methods: In vitro, the cultured THP-1 macrophages were stimulated with alive SARS-CoV-2 virus at different loading dose, N protein or S protein with/without TICAM2-siRNA, TIRAP-siRNA or MyD88-siRNA. The TICAM2, TIRAP and MyD88 expression in the THP-1 cells after N protein stimulation were determined. In vivo, naïve mice or mice with depletion macrophages were injected with N protein or dead SARS-CoV-2. The macrophages in the lung were analyzed with flow cytometry, and lung sections were stained with H&E or immunohistochemistry. Culture supernatants and serum were harvested for cytokines measurements with cytometric bead array. Results: Alive SARS-CoV-2 virus or N protein but not S protein induced high cytokine releases from macrophages in a time or virus loading dependent manner. MyD88 and TIRAP but not TICAM2 were highly involved in macrophage activation triggered by N protein whilst both inhibited with siRNA decreased inflammatory responses. Moreover, N protein and dead SARS-CoV-2 caused systemic inflammation, macrophage accumulation and acute lung injury in mice. Macrophage depletion in mice decreased cytokines in response to N protein. Conclusion: SARS-CoV-2 and its N protein but not S protein induced acute lung injury and systemic inflammation, which was closely related to macrophage activation, infiltration and release cytokines.

2.
Front Immunol ; 14: 1139620, 2023.
Article in English | MEDLINE | ID: covidwho-2296693

ABSTRACT

Background: During the COVID-19 epidemic, vaccination has become the most safe and effective way to prevent severe illness and death. Inactivated vaccines are the most widely used type of COVID-19 vaccines in the world. In contrast to spike-based mRNA/protein COVID-19 vaccines, inactivated vaccines generate antibodies and T cell responses against both spike and non-spike antigens. However, the knowledge of inactivated vaccines in inducing non-spike-specific T cell response is very limited. Methods: In this study, eighteen healthcare volunteers received a homogenous booster (third) dose of the CoronaVac vaccine at least 6 months after the second dose. CD4+ and CD8+ T cell responses against a peptide pool from wild-type (WT) non-spike proteins and spike peptide pools from WT, Delta, and Omicron SARS-CoV-2 were examined before and 1-2 weeks after the booster dose. Results: The booster dose elevated cytokine response in CD4+ and CD8+ T cells as well as expression of cytotoxic marker CD107a in CD8+ T cells in response to non-spike and spike antigens. The frequencies of cytokine-secreting non-spike-specific CD4+ and CD8+ T cells correlated well with those of spike-specific from WT, Delta, and Omicron. Activation-induced markers (AIM) assay also revealed that booster vaccination elicited non-spike-specific CD4+ and CD8+ T cell responses. In addition, booster vaccination produced similar spike-specific AIM+CD4+ and AIM+CD8+ T cell responses to WT, Delta, and Omicron, indicting strong cross-reactivity of functional cellular response between WT and variants. Furthermore, booster vaccination induced effector memory phenotypes of spike-specific and non-spike-specific CD4+ and CD8+ T cells. Conclusions: These data suggest that the booster dose of inactive vaccines broadens both non-spike-specific and spike-specific T cell responses against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , CD8-Positive T-Lymphocytes , Memory T Cells , COVID-19/prevention & control , SARS-CoV-2 , Cytokines , Vaccines, Inactivated
3.
EPMA J ; 14(1): 101-117, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2289025

ABSTRACT

Background: Intensive care unit admission (ICUA) triage has been urgent need for solving the shortage of ICU beds, during the coronavirus disease 2019 (COVID-19) surge. In silico analysis and integrated machine learning (ML) approach, based on multi-omics and immune cells (ICs) profiling, might provide solutions for this issue in the framework of predictive, preventive, and personalized medicine (PPPM). Methods: Multi-omics was used to screen the synchronous differentially expressed protein-coding genes (SDEpcGs), and an integrated ML approach to develop and validate a nomogram for prediction of ICUA. Finally, the independent risk factor (IRF) with ICs profiling of the ICUA was identified. Results: Colony-stimulating factor 1 receptor (CSF1R) and peptidase inhibitor 16 (PI16) were identified as SDEpcGs, and each fold change (FCij) of CSF1R and PI16 was selected to develop and validate a nomogram to predict ICUA. The area under curve (AUC) of the nomogram was 0.872 (95% confidence interval (CI): 0.707 to 0.950) on the training set, and 0.822 (95% CI: 0.659 to 0.917) on the testing set. CSF1R was identified as an IRF of ICUA, expressed in and positively correlated with monocytes which had a lower fraction in COVID-19 ICU patients. Conclusion: The nomogram and monocytes could provide added value to ICUA prediction and targeted prevention, which are cost-effective platform for personalized medicine of COVID-19 patients. The log2fold change (log2FC) of the fraction of monocytes could be monitored simply and economically in primary care, and the nomogram offered an accurate prediction for secondary care in the framework of PPPM. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-023-00317-5.

4.
J Med Virol ; : e28292, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2237281

ABSTRACT

During the COVID-19 epidemic, nonpharmaceutical interventions (NPIs) blocked the transmission route of respiratory diseases. This study aimed to investigate the impact of NPIs on the influenza A virus (IAV) outbreak. The present study enrolled all children with respiratory tract infections who came to the Children's Hospital of Zhejiang University between January 2019 and July 2022. A direct immunofluorescence assay kit detected IAV. Virus isolation and Sanger sequencing were performed. From June to July 2022, in Hangzhou, China, the positive rate of IAV infection in children has increased rapidly, reaching 30.41%, and children over 3 years old are the main infected population, accounting for 75% of the total number of infected children. Influenza A (H3N2) viruses are representative strains during this period. In this outbreak, H3N2 was isolated from a cluster of its own and is highly homologous with A/South_Dakota/22/2022 (2021-2022 Northern Hemisphere). Between isolated influenza A (H3N2) viruses and A/South_Dakota/22/2022, the nucleotide homology of the HA gene ranged from 97.3% to 97.5%; the amino acid homology was 97%-97.2%, and the genetic distance of nucleotides ranged from 0.05 to 0.052. Compared with A/South_Dakota/22/2022, the isolated H3N2 showed S156H, N159Y, I160T, D186S, S198P, I48T, S53D, and K171N mutations. There was no variation in 13 key amino acid sites associated with neuraminidase inhibitor resistance in NA protein. Long-term NPIs have significantly affected the evolution and transmission of the influenza virus and human immunity, breaking the dynamic balance between the IAV and human immunity.

5.
Int J Infect Dis ; 111: 347-353, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-2113590

ABSTRACT

AIMS: To explore the contagiousness and new SARS-CoV-2 mutations in pediatric COVID-19. METHODS: This cohort study enrolled all pediatric patients admitted to 8 hospitals in Zhejiang Province of China between 21 January and 29 February 2020, their family members and close-contact classmates. Epidemiological, demographic, clinical and laboratory data were collected. Bioinformatics was used to analyze the features of SARS-CoV-2. Individuals were divided into 3 groups by the first-generation case: Groups 1 (unclear), 2 (adult), and 3 (child). The secondary attack rate (SAR) and R0 were compared among the groups. RESULTS: The infection rate among 211 individuals was 64% (135/211). The SAR in Groups 2 and 3 was 71% (73/103) and 3% (1/30), respectively; the median R0 in Groups 2 and 3 was 2 (range: 1-8) and 0 (range: 0-1), respectively. Compared with adult cases, the SAR and R0 of pediatric cases were significantly lower (p<0.05). We obtained SARS-CoV-2 sequences from the same infant's throat and fecal samples at a two-month interval and found that the new spike protein A958D mutation detected in the stool improved thermostability theoretically. CONCLUSIONS: Children have lower ability to spread SARS-CoV-2. The new A958D mutation is a potential reason for its long residence in the intestine.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Adult , COVID-19/virology , Child , China/epidemiology , Cohort Studies , Humans , Incidence , Infant , Mutation , SARS-CoV-2/genetics
6.
World J Pediatr ; 18(8): 538-544, 2022 08.
Article in English | MEDLINE | ID: covidwho-1906548

ABSTRACT

BACKGROUND: Severe acute hepatitis of unknown etiology in children has recently exhibited a global trend of concentrated occurrence. This review aimed to summarize the current available information regarding the outbreak of severe acute hepatitis and introduce our hospital's previous experiences with the diagnosis and treatment of severe acute hepatitis for reference. DATA SOURCES: Websites including the UK Health Security Agency, European Centre for Disease Prevention and Control, CDC, WHO, and databases including PubMed/Medline, Cochrane Library, Embase and Web of Science were searched for articles on severe acute hepatitis in children. RESULTS: As of May 26, 2022, a total of 650 cases have been reported in 33 countries; at least 38 (6%) children required liver transplantation, and nine (1%) died. Cases are predominantly aged between 3 and 5 years old, and there are no epidemiological links among them. The common manifestations are jaundice, vomiting and pale stools. Adenovirus tested positive in most cases, and SARS-CoV-2 and other viruses were detected in a few cases, but virus particles were not found in liver tissue. Adenovirus immunohistochemistry showed immunoreactivity in the intrasinusoidal lumen from some liver samples. The hierarchical treatment includes symptomatic and supportive therapy, management of coagulation disorders and hepatic encephalopathy, artificial liver support, and liver transplantation (approximately 6%-10% of cases require liver transplant). CONCLUSIONS: The etiology of this severe acute hepatitis in children is not clear. The clinical features are severe acute hepatitis with significantly elevated liver enzymes. Clinicians need to be alert to children with hepatitis.


Subject(s)
Hepatitis , Acute Disease , Child , Child, Preschool , Hepatitis/diagnosis , Hepatitis/prevention & control , Hepatitis/therapy , Humans
7.
Front Immunol ; 12: 791753, 2021.
Article in English | MEDLINE | ID: covidwho-1639168

ABSTRACT

Background: Infection of SARS-CoV-2 may cause acute respiratory syndrome. It has been reported that SARS-CoV-2 nucleocapsid protein (N-protein) presents early in body fluids during infection. The direct involvement of N-protein in lung injury is poorly understood. Methods: Recombinant N-protein was pretreated with polymyxin B, a lipopolysaccharide (LPS)-neutralizing agent. C57BL/6, C3H/HeJ (resistant to LPS), and C3H/HeN (control for C3H/HeJ) mice were exposed to N-protein via intratracheal administration to examine acute lung injury. In vitro, bone marrow-derived macrophages (BMDMs) were cultured with N-protein to study phosphorylation of nuclear factor kappa B (NF-ĸB) p65, macrophage polarization, and expression of proinflammatory cytokines. Results: N-protein produced acute lung injury in C57BL/6 mice, with elevated protein permeability, total cell count, neutrophil infiltration, and proinflammatory cytokines in the bronchioalveolar lavage. N-protein also induced lung injury in both C3H/HeJ and C3H/HeN mice, indicating that the effect could not be attributed to the LPS contamination. N-protein triggered phosphorylation of NF-ĸB p65 in vitro, which was abolished by both N-protein denaturation and treatment with an antibody for N-protein, demonstrating that the effect is N-protein specific. In addition, N-protein promoted M1 macrophage polarization and the expression of proinflammatory cytokines, which was also blocked by N-protein denaturation and antibody for N-protein. Furthermore, N-protein induced NF-ĸB p65 phosphorylation in the lung, while pyrrolidine dithiocarbamate, an NF-ĸB inhibitor, alleviated the effect of N-protein on acute lung injury. Conclusions: SARS-CoV-2 N-protein itself is toxic and induces acute lung injury in mice. Both N-protein and NF-ĸB pathway may be therapeutic targets for treating multi-organ injuries in Coronavirus disease 2019 (COVID-19).


Subject(s)
Acute Lung Injury/virology , COVID-19 , Coronavirus Nucleocapsid Proteins/toxicity , NF-kappa B/metabolism , Acute Lung Injury/metabolism , Animals , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Phosphoproteins/toxicity , SARS-CoV-2
9.
World Journal of Pediatric Surgery ; 3(1), 2020.
Article in English | ProQuest Central | ID: covidwho-1318223

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread widely and persistently over 100 countries. New challenges have occurred in the perioperative management of airway and anesthesia in children diagnosed with SARS-CoV-2 infection. According to current publications and to our own experiences in anesthesia management for cases with SARS-CoV-2 suspected, we reviewed concerns about the perioperative prevention of SARS-CoV-2 to medical staff and the anesthesia strategy to the patient.

10.
World Journal of Pediatric Surgery ; 3(1), 2020.
Article in English | ProQuest Central | ID: covidwho-1318221

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to more than 100 countries. Children approved to be susceptible to SARS-CoV-2 infection. Preventing and controlling the epidemic while ensuring orderly flows of pediatric surgery clinical work has proven to be a big challenge for both patients and clinicians during the epidemic. Based on the transmission characteristics of SARS-CoV-2 and the requirements for prevention and control of COVID-19, the authors proposed some concrete measures and practical strategies of managing emergency, limited-term, and elective pediatric surgeries during the epidemic period.

11.
Cell ; 184(7): 1895-1913.e19, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1062273

ABSTRACT

A dysfunctional immune response in coronavirus disease 2019 (COVID-19) patients is a recurrent theme impacting symptoms and mortality, yet a detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 196 COVID-19 patients and controls and created a comprehensive immune landscape with 1.46 million cells. The large dataset enabled us to identify that different peripheral immune subtype changes are associated with distinct clinical features, including age, sex, severity, and disease stages of COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was found in diverse epithelial and immune cell types, accompanied by dramatic transcriptomic changes within virus-positive cells. Systemic upregulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis of and developing effective therapeutic strategies for COVID-19.


Subject(s)
COVID-19/immunology , Megakaryocytes/immunology , Monocytes/immunology , RNA, Viral , SARS-CoV-2/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , China , Cohort Studies , Cytokines/metabolism , Female , Humans , Male , Middle Aged , RNA, Viral/blood , RNA, Viral/isolation & purification , Single-Cell Analysis , Transcriptome/immunology , Young Adult
12.
J Med Virol ; 92(11): 2804-2812, 2020 11.
Article in English | MEDLINE | ID: covidwho-935146

ABSTRACT

A pandemic of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection broke out all over the world; however, epidemiological data and viral shedding in pediatric patients are limited. We conducted a retrospective, multicenter study, and followed-up with all children from the families with SARS-CoV-2 infected members in Zhejiang Province, China. All infections were confirmed by testing the SARS-CoV-2 RNA with real-time reverse transcription PCR method, and epidemiological data between children and adults in the same families were compared. Effect of antiviral therapy was evaluated observationally and fecal-viral excretion times among groups with different antiviral regiments were compared with Kaplan-Meier plot. By 29 February 2020, 1298 cases from 883 families were confirmed with SARS-CoV-2 infection and 314 of which were families with children. Incidence of infection in child close contacts was significantly lower than that in adult contacts (13.2% vs 21.2%). The mean age of 43 pediatric cases was 8.2 years and mean incubation period was 9.1 days. Forty (93.0%) were family clustering. Thirty-three children had coronavirus disease 2019 (20 pneumonia) with mild symptoms and 10 were asymptomatic. Fecal SARS-CoV-2 RNA detection was positive in 91.4% (32/35) cases and some children had viral excretion time over 70 days. Viral clearance time was not different among the groups treated with different antiviral regiments. No subsequent infection was observed in family contacts of fecal-viral-excreting children. Children have lower susceptibility of SARS-CoV-2 infection, longer incubation, and fecal-viral excretion time. Positive results of fecal SARS-CoV-2 RNA detection were not used as indication for hospitalization or quarantine.


Subject(s)
COVID-19/epidemiology , Feces/virology , SARS-CoV-2/physiology , Virus Shedding , Adolescent , Antiviral Agents/therapeutic use , COVID-19/transmission , Carrier State/epidemiology , Carrier State/virology , Child , Child, Preschool , China/epidemiology , Family , Female , Hospitalization , Humans , Incidence , Infant , Male , Retrospective Studies , Risk Factors , SARS-CoV-2/pathogenicity
13.
ESC Heart Fail ; 7(6): 3464-3472, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-763099

ABSTRACT

People with cardiovascular disease (CVD) often contract coronavirus disease 2019 (COVID-19). However, the interaction between COVID-19 and CVD is unclear. In this systematic review, the available evidence for the crosstalk between COVID-19 and CVD and its treatment was analysed. A search was performed in the electronic databases MEDLINE and EMBASE. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects human cells via angiotensin-converting enzyme 2. SARS-CoV-2 can cause CVD by inducing cytokine storms, creating an imbalance in the oxygen supply and demand and disrupting the renin-angiotensin-aldosterone system; SARS-CoV-2 infection can also lead to the development of CVD through the side effects of therapeutic drugs, psychological factors, and aggravation of underlying CVD. The most common CVDs caused by SARS-CoV-2 infection are acute myocardial injury, arrhythmia, and heart failure. Studies have found that there is an interaction between COVID-19 and CVD. Underlying CVD is associated with a high risk of mortality in patients with COVID-19. SARS-CoV-2 infection can also cause new-onset CVD. Clinicians need to pay close attention to cardiovascular complications during the diagnosis and treatment of patients with COVID-19 to reduce patient mortality.

14.
J Pediatr ; 224:146-149, 2020.
Article in English | MEDLINE | ID: covidwho-724908

ABSTRACT

The lower than expected rates of children affected by coronavirus disease-2019 does not mean that there was no impact on children's health. Using data on pediatric healthcare visits before and after the breakout of coronavirus disease-2019 and historical data, we identified pediatric conditions that were most affected by the pandemic and epidemic control measures during the pandemic.

16.
J Med Virol ; 92(7): 755-769, 2020 07.
Article in English | MEDLINE | ID: covidwho-23637

ABSTRACT

The rapid spread of the epidemic has aroused widespread concern in the international community. Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) was first reported in China, with bats as the likely original hosts and pangolins as potential intermediate hosts. The current source of the disease is mainly patients infected with SARS-COV-2. Patients in the incubation period may also become sources of infection. The virus is mainly transmitted via respiratory droplets and contact, and the population is generally susceptible. The epidemic has progressed through the local outbreak stage and community transmission stage due to exposure at Wuhan's Huanan wholesale seafood market and is now in the stage of large-scale transmission due to the spread of the epidemic. The basic productive number (R0) at the beginning of the epidemic was 2.2, with an average incubation period of 5.2 days. The proportion of critically ill patients was 23.4%, the mortality rate was lower than those of SARS and Middle East respiratory syndrome, and 96.5% of deaths occurred in Hubei Province, where the outbreak occurred first. Among them, elderly men with underlying diseases had a higher mortality rate. Chinese medical staff have summarized a set of effective strategies and methods in the diagnosis and treatment of this disease that are worthy of reference for their international counterparts. With powerful government intervention and the efforts of Chinese medical staff, China's outbreak has gradually improved.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Age Factors , Animals , Azithromycin/therapeutic use , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , China/epidemiology , Chiroptera/virology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Humans , Hydroxychloroquine/therapeutic use , Immunization, Passive/methods , Infectious Disease Incubation Period , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Prevalence , SARS-CoV-2 , Severity of Illness Index , Survival Analysis , COVID-19 Serotherapy
18.
World J Pediatr ; 16(3): 247-250, 2020 06.
Article in English | MEDLINE | ID: covidwho-2898

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV) has become a most challenging health emergency. Owing to rigorous quarantine and control measures taken in China, routine neonatal health surveillance and follow-up have become challenging. Without follow-up surveillance, some rapid and progressive newborn diseases, such as bilirubin encephalopathy, may be ignored. The characteristics of onset age of kernicterus suggest that monitoring of bilirubin level at home provides a useful way to alert hospital visits and to prevent the development of extremely hyperbilirubinemia. Therefore, we developed an online follow-up program for convenient monitoring of bilirubin level of newborns that is based on our practical experiences. The aim is to make our management strategies of neonatal jaundice tailored to the infection prevention and control during the COVID-19 epidemic.


Subject(s)
Aftercare/methods , Bilirubin/blood , Coronavirus Infections , Jaundice, Neonatal/blood , Jaundice, Neonatal/therapy , Mobile Applications , Pandemics , Pneumonia, Viral , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Disease Outbreaks , Humans , Infant, Newborn , Monitoring, Physiologic , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control
20.
World J Pediatr ; 16(3): 240-246, 2020 06.
Article in English | MEDLINE | ID: covidwho-334

ABSTRACT

Since December 2019, an epidemic caused by novel coronavirus (2019-nCoV) infection has occurred unexpectedly in China. As of 8 pm, 31 January 2020, more than 20 pediatric cases have been reported in China. Of these cases, ten patients were identified in Zhejiang Province, with an age of onset ranging from 112 days to 17 years. Following the latest National recommendations for diagnosis and treatment of pneumonia caused by 2019-nCoV (the 4th edition) and current status of clinical practice in Zhejiang Province, recommendations for the diagnosis and treatment of respiratory infection caused by 2019-nCoV for children were drafted by the National Clinical Research Center for Child Health, the National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine to further standardize the protocol for diagnosis and treatment of respiratory infection in children caused by 2019-nCoV.


Subject(s)
Coronavirus Infections , Pandemics , Pneumonia, Viral , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/therapy , COVID-19 , Child , Coronavirus Infections/complications , Humans , Pneumonia, Viral/complications , Practice Guidelines as Topic , Respiratory Tract Infections/virology
SELECTION OF CITATIONS
SEARCH DETAIL